GAN(Generative Adversarial Network:敵対的生成ネットワーク)は、高い精度でコンテンツを認識し、再現できる独特の能力を持つ技術だ。本物の顔写真のような画像を生成するGANの用途には特に大きな注目が集まる。GANを活用してコンピュータのみで生成した人物画像の実例も示されており、これは本物の人のようにしか見えないという点で素晴らしいと同時に、その技術がどのような使われ方をするかという点で疑念を生じさせる。
初期のGANで生成された画像は、比較的簡単に、コンピュータで生成されたものだと特定できた。ところが高度な学習を受けたGANは、リアルな人の顔写真を生成できるようになり、注意深く見ない限り大抵の人を簡単にだますことができる。GANは本物と見分けが付かない偽の動画や画像である「ディープフェイク」の生成に悪用される可能性があり、プライバシーや身元確認に関する重大な懸念を生じさせる。
悪用や詐欺行為の目的で、GAN生成画像を使って偽のソーシャルメディアアカウントを開設する行為を阻止する手段はほとんどない。顔認識ソフトウェアに依存する企業にとって、そうした画像はセキュリティ問題やプライバシー問題につながりかねない。
残念なブランド体験で8割の顧客は「もう買わない」――Sitecore調査
消費者にとって不都合な事象が発生した際にも、ブランドを好きでいられるのは10人に1人。
ナイキとアディダスに学ぶ ファンを増やす企業文化とは?
スポーツにおけるトップブランドの座を巡ってし烈な競争を繰り広げてきたナイキとアディ...
DXにおける「コンサルティング力」とは?
DXが加速する中でコンサルティング人材へのニーズが高まっています。DXにおける「コンサ...