2020年12月01日 08時00分 公開
特集/連載

AIによるセキュリティの自動化がもたらす次の課題Computer Weekly製品ガイド

ITセキュリティとハッカー界との戦いは、常にいたちごっこの状況だった。だがその戦いの自動化が進展している。

[Cliff Saran,Computer Weekly]
iStock.com/metamorworks

 サイバーセキュリティの意思決定者は、システムやビジネスに支障が出たり知的財産やデータが盗まれたり評判が傷ついたりすることを最も懸念する。

 PA ConsultingのAI・自動化エキスパート、リー・ハウェルズ氏とAI・ブロックチェーンのエキスパート、ヤニス・カルフォグロウ氏によると、組織を狙ってAIを使う攻撃は増加の一途にあり、AIの能力も増大して一層の高度化が進んでいる。

 両氏は、サイバー犯罪集団によるAIの利用は避けられないと指摘し、そうした動きによってデジタルセキュリティに対する脅威は増大し、サイバー攻撃が増えて手口も巧妙化すると予想した。

 「AIは、攻撃の速度や量の増大といった一般的なものから、発見や検出を難しくしたり信頼できるユーザーになりすましたり、ディープフェイクを使うといった高度なものに至るまで、サイバー攻撃者にあらゆるチャンスをもたらす」と両氏は解説する。

オーダーメイド攻撃

 ハウェルズ、カルフォグロウの両氏によると、大量のデータを高速分析できるAIの能力を利用すれば、そうした攻撃の多くは特定の組織に合わせた独自の手法で仕掛けられる公算が大きい。

 そうした高度に洗練されたサイバー攻撃は、AIを駆使するプロの犯罪ネットワークによって実行され、組織のITセキュリティ能力を圧倒するスピードと完璧さで攻撃を仕掛けることが可能になる。

 AIを使った悪質行為に対しては、AI対応のセキュリティ自動化で対抗できる可能性がある。ハウェルズ、カルフォグロウの両氏によると、行動に基づく分析を利用したり機械学習の高度なパターン照合機能を導入したりすることができる。

 「データアクセスに関する適切な合意があることを前提として、ストリーミング、端末、従来型のITインフラの豊富なデータを利用すれば、ユーザーの行動に関する洗練されたイメージを描くことができる」(両氏)

 両氏によると、ユーザーの行動データを分析すれば特定の時間にどんな端末が使われているか(例えば午後10時はiPadなど)、その時間に平均的なユーザーは何をしているか(午後10時に電子メールを処理している)、自分たちが相手にしているのはどんなユーザーか(セキュリティポリシーに従って午後10時以降はビデオ電話は使わない)、どんなデータにアクセスしているか(午後10時以降は共有ドライブにはアクセスしない)といった内容を組織が把握する助けになる。

 よく訓練された機械学習システムを使えば、こうした行動データをリアルタイムでメンテナンスしたり更新したりできる。普段のパターンから外れた行動を検出するとアラートを出して、サイバー防御の仕組みを展開できる。

データ流出の代償

 IBMが2019年にまとめた情報漏えいコストに関する報告書は、自動化されたセキュリティの仕組みや技術を導入している企業と導入していない企業を比較した。




続きを読むには、[続きを読む]ボタンを押して
ください(PDFをダウンロードします)。






ITmedia マーケティング新着記事

news092.jpg

営業デジタル化の始め方(無料eBook)
「ITmedia マーケティング」では、気になるマーケティングトレンドをeBookにまとめて不定...

news086.jpg

「RED」「Bilibili」「Douyin」他 中国の主要SNSプラットフォームの特徴まとめ
トレンド変化の大きい中国においてマーケティングを成功させるためには、主要SNSプラット...

news162.jpg

コロナ禍における「ご自愛消費」の現状――スナックミー調査
「ご自愛消費」として最も多いのは「スイーツやおやつ」で全体の68%。その他、ランチ38...