機械学習で人工知能(AI)エンジンの精度を上げるには、質の良い学習データが不可欠だ。質の悪い学習データでは、AIエンジンの不適切な判断を招くリスクがある。事例を基に、学習データの作成方法を考える。
人工知能(AI)エンジンの機械学習に利用する学習データ(教師データとも)は、「量」が重要だと考えられてきた。その考え方自体は今でも通用するが、状況は変わりつつある。AIエンジンが誤った判断を下すことが問題になり、判断結果を左右する学習データの「質」がより重視されつつある。
質の高い学習データを用意するには、収集したデータから“ゴミ”となる不要なデータを排除し、AIエンジンの用途に合わせてデータを分類する必要がある。こうしたデータクリーニングの過程には、従来データサイエンティストを必要としていたが、自動化ツールも登場している。
本資料では、AI技術の活用を積極的に進めるFacebookやIBMをはじめ、各企業が学習用データを用意するために実践している手法を紹介する。
中身を読むには、「中身を読む」ボタンを押して無料ブックレットをダウンロードしてください。
Copyright © ITmedia, Inc. All Rights Reserved.
なぜクラウド全盛の今「メインフレーム」が再び脚光を浴びるのか
メインフレームを支える人材の高齢化が進み、企業の基幹IT運用に大きなリスクが迫っている。一方で、メインフレームは再評価の時を迎えている。

「サイト内検索」&「ライブチャット」売れ筋TOP5(2025年5月)
今週は、サイト内検索ツールとライブチャットの国内売れ筋TOP5をそれぞれ紹介します。

「ECプラットフォーム」売れ筋TOP10(2025年5月)
今週は、ECプラットフォーム製品(ECサイト構築ツール)の国内売れ筋TOP10を紹介します。

「パーソナライゼーション」&「A/Bテスト」ツール売れ筋TOP5(2025年5月)
今週は、パーソナライゼーション製品と「A/Bテスト」ツールの国内売れ筋各TOP5を紹介し...