機械学習で人工知能(AI)エンジンの精度を上げるには、質の良い学習データが不可欠だ。質の悪い学習データでは、AIエンジンの不適切な判断を招くリスクがある。事例を基に、学習データの作成方法を考える。
人工知能(AI)エンジンの機械学習に利用する学習データ(教師データとも)は、「量」が重要だと考えられてきた。その考え方自体は今でも通用するが、状況は変わりつつある。AIエンジンが誤った判断を下すことが問題になり、判断結果を左右する学習データの「質」がより重視されつつある。
質の高い学習データを用意するには、収集したデータから“ゴミ”となる不要なデータを排除し、AIエンジンの用途に合わせてデータを分類する必要がある。こうしたデータクリーニングの過程には、従来データサイエンティストを必要としていたが、自動化ツールも登場している。
本資料では、AI技術の活用を積極的に進めるFacebookやIBMをはじめ、各企業が学習用データを用意するために実践している手法を紹介する。
中身を読むには、「中身を読む」ボタンを押して無料ブックレットをダウンロードしてください。
CMOはつらいよ マッキンゼー調査で浮かび上がるAI時代の厳しめな業務実態
生成AI、研究開発、価格戦略……。慢性的なリソース不足の中でマーケターの業務範囲はま...
「リンクレピュテーション」とは? SEO対策や注意点もわかりやすく解説
「リンクレピュテーションって何のこと?」「なぜ重要?」「リンクレピュテーションを意...
MAツール「MoEngage」 DearOneが日本語版UI提供へ
NTTドコモの子会社であるDearOneは、AI搭載のMAツール「MoEngage」の日本語版を2025年1月...