機械学習で人工知能(AI)エンジンの精度を上げるには、質の良い学習データが不可欠だ。質の悪い学習データでは、AIエンジンの不適切な判断を招くリスクがある。事例を基に、学習データの作成方法を考える。
人工知能(AI)エンジンの機械学習に利用する学習データ(教師データとも)は、「量」が重要だと考えられてきた。その考え方自体は今でも通用するが、状況は変わりつつある。AIエンジンが誤った判断を下すことが問題になり、判断結果を左右する学習データの「質」がより重視されつつある。
質の高い学習データを用意するには、収集したデータから“ゴミ”となる不要なデータを排除し、AIエンジンの用途に合わせてデータを分類する必要がある。こうしたデータクリーニングの過程には、従来データサイエンティストを必要としていたが、自動化ツールも登場している。
本資料では、AI技術の活用を積極的に進めるFacebookやIBMをはじめ、各企業が学習用データを用意するために実践している手法を紹介する。
中身を読むには、「中身を読む」ボタンを押して無料ブックレットをダウンロードしてください。
Copyright © ITmedia, Inc. All Rights Reserved.
生成AIを活用して業務や顧客体験の再構築を進める動きが活性化しているが、その多くが、PoCやラボ環境の段階にとどまっている。なぜなら、生成AIの可能性を最大限に引き出すための、インフラのパフォーマンスが不十分だからだ。
昨今のソフトウェア開発では、AIコーディングアシスタントの活用が主流になっている。しかし、最適なコーディングアシストツールは、開発者や企業によって異なるという。導入の際は、どのようなポイントに注意すればよいのか。
生成AIの活用にはデータベースが重要となるが、従来のデータベースは最新テクノロジーに対応できないなどの課題がある。本資料では、データベースをモダナイズし、生成AIを用いてビジネスイノベーションを生み出すための方法を探る。
ビジネスにおいて、検索体験およびその結果の質の向上が重要なテーマとなっている。顧客はもちろん、自社の従業員に対しても、実用的な答えをより迅速に、手間なく入手できる環境の整備が求められている。
登場以来ビジネスへの活用方法が模索されてきた生成AI。近年では業務組み込みにおける具体的な成功例が数多く報告されている。本資料では、5件の生成AI活用事例を交えて、業務に組み込む上での具体的なアプローチを解説する。
いまさら聞けない「仮想デスクトップ」と「VDI」の違いとは
遠隔のクライアント端末から、サーバにあるデスクトップ環境を利用できる仕組みである仮想デスクトップ(仮想PC画面)は便利だが、仕組みが複雑だ。仮想デスクトップの仕組みを基礎から確認しよう。
「サイト内検索」&「ライブチャット」売れ筋TOP5(2025年4月)
今週は、サイト内検索ツールとライブチャットの国内売れ筋TOP5をそれぞれ紹介します。
「ECプラットフォーム」売れ筋TOP10(2025年4月)
今週は、ECプラットフォーム製品(ECサイト構築ツール)の国内売れ筋TOP10を紹介します。
「パーソナライゼーション」&「A/Bテスト」ツール売れ筋TOP5(2025年4月)
今週は、パーソナライゼーション製品と「A/Bテスト」ツールの国内売れ筋各TOP5を紹介し...