高価なGPUを導入しても、ストレージの性能が低くて処理待ちが発生すれば、投資の意味が薄れてしまう。AIプロジェクトを失敗させる「データ供給不足」を解消し得る、主要ストレージベンダー7社とその製品を解説する。

AI需要の爆発によりGPUの価格高騰と調達難が続く中、Microsoftが発表した独自AIチップ「Maia 200」。これは単なる新製品の発表ではない。NVIDIA依存からの脱却、そして企業のAI運用コストを劇的に左右する「ゲームチェンジャー」となる可能性がある。
「人件費の削減のために生成AIを導入する」という考えは、成り立たなくなる可能性がある。Gartnerは2030年までに生成AIのコストが人件費を超えると試算した。企業のAI活用方針は今後どうすべきか。
攻撃者もAIを使っているというベンダーの煽り文句に、経営層も焦りを感じている。だが、実態のないAI機能を導入すれば、企業は痛い目に合う可能性がある。対策は何か。
AI導入を成功に導く拠点として注目されるAIセンターオブエクセレンス(AI CoE)だが、設立すれば成果が出るとは限らない。実効性あるAI活用の鍵を握るのは、その“運用の質”にある。何をすればいいのか。
生成AIの活用を、PoCには成功しても本番環境での活用に至っていない企業がある。本番運用までの壁を乗り越えた企業は何をしたのか。
なぜクラウド全盛の今「メインフレーム」が再び脚光を浴びるのか
メインフレームを支える人材の高齢化が進み、企業の基幹IT運用に大きなリスクが迫っている。一方で、メインフレームは再評価の時を迎えている。