データ連携のプロセスを適切に管理していないと、BIや分析のアプリケーションで整合性に欠けるデータが生じる可能性がある。こうした問題を回避する手順を幾つか紹介しよう。
一般的にはデータ品質の重要な要素として、正確性、完全性、適時性、整合性がある。データの整合性とは、実際には何を意味するのだろうか。データ管理のチームは整合性によってどのような影響を受けるだろうか。複数のアプリケーションでデータの整合性を確保するために利用できるデータ連携手法には、どのような種類があるだろうか。
データの整合性が必要になるのは、ある状況が前提にあるためだ。それはBIや分析に利用する複数のアプリケーションが、同じソースのデータセットをさまざまな方法で頻繁に使用するような状況だ。毎日の売買取引を表すデータがあるとする。業務報告をするときは、複数ある販売地域での類似製品の販売数を比較するために、このデータを使用する。高度な分析アプリケーションでは、顧客が購入した商品の種類に基づいて、顧客プロファイルを作成するためにこのデータを使用することもある。
この2種類のアプリケーションに同じ売買取引データが使用されている。一方で、このデータを抽出、変換、再編成、送信するプロセスは、それぞれのアプリケーションで違う。こうしたプロセスでは、少なくとも4つの異なる形式のデータ不整合がもたらされるリスクがある。
Copyright © ITmedia, Inc. All Rights Reserved.
トランプ氏当選でイーロン・マスク氏に追い風 過去最高の投稿数達成でXは生き延びるか?
2024年の米大統領選の当日、Xの利用者数が過去最高を記録した。Threadsに流れていたユー...
トランプ氏圧勝で気になる「TikTok禁止法」の行方
米大統領選で共和党のトランプ前大統領が勝利した。これにより、TikTokの米国での将来は...
インバウンド消費を左右する在日中国人の影響力
アライドアーキテクツは、独自に構築した在日中国人コミュニティーを対象に、在日中国人...