一般的にはデータ品質の重要な要素として、正確性、完全性、適時性、整合性がある。データの整合性とは、実際には何を意味するのだろうか。データ管理のチームは整合性によってどのような影響を受けるだろうか。複数のアプリケーションでデータの整合性を確保するために利用できるデータ連携手法には、どのような種類があるだろうか。
データの整合性が必要になるのは、ある状況が前提にあるためだ。それはBIや分析に利用する複数のアプリケーションが、同じソースのデータセットをさまざまな方法で頻繁に使用するような状況だ。毎日の売買取引を表すデータがあるとする。業務報告をするときは、複数ある販売地域での類似製品の販売数を比較するために、このデータを使用する。高度な分析アプリケーションでは、顧客が購入した商品の種類に基づいて、顧客プロファイルを作成するためにこのデータを使用することもある。
この2種類のアプリケーションに同じ売買取引データが使用されている。一方で、このデータを抽出、変換、再編成、送信するプロセスは、それぞれのアプリケーションで違う。こうしたプロセスでは、少なくとも4つの異なる形式のデータ不整合がもたらされるリスクがある。
Pinterestが提供する広告主とクリエイターの協業の仕組み「アイデアアド」とは?
没入型全画面で複数の動画や画像を1つのアイデアとして表示した「アイデアピン」をブラン...
面白い広告は記憶に残るが、ユーモアを活用できている企業は少ない――Oracle調査
ユーモアを取り入れたブランドは支持され、ロイヤルティーが高まり、顧客は再び購入した...
マクドナルドvsバーガーキング ネット戦略がウマいのはどっち?
「ITmedia マーケティング」では、気になるマーケティングトレンドをeBookにまとめて不定...