消費財メーカーでは、商品の需要に合わせた在庫の最適化が常に課題となっている。AI技術やロボットを使った物流の最適化について、事例を基に説明する。
消費財メーカーは、適切な量の在庫を保持し、適切な場所に供給しなければならない。在庫切れは、顧客の信頼とブランドの知名度を失う原因の一つになる。こうした問題を回避して、需要に合わせて適切な供給量を確保するために、消費財メーカーは予測分析と在庫管理戦略に投資している。
機械学習をはじめとする人工知能(AI)技術は、従来の予測分析アプローチでは見つからないパターンや異常を検出できる。小売り大手Walmartは機械学習によるパターン分析を利用して、消費者がハリケーンの前にKelloggの菓子「Pop-Tarts」(ポップタルト)のストロベリー味を購入することを発見した。人間の行動パターンを観察すると、こうした珍しい相関関係が見つかることがある。これが売上の増加へとつながる。本稿では前編「「Alexa、油汚れの落とし方を教えて」を実現 P&Gも挑む“顧客とつながるAI”」に引き続き、AI技術を利用する消費財メーカーの取り組みについて説明する。
Copyright © ITmedia, Inc. All Rights Reserved.
ハロウィーンの口コミ数はエイプリルフールやバレンタインを超える マーケ視点で押さえておくべきことは?
ホットリンクは、SNSの投稿データから、ハロウィーンに関する口コミを調査した。
なぜ料理の失敗写真がパッケージに? クノールが展開する「ジレニアル世代」向けキャンペーンの真意
調味料ブランドのKnorr(クノール)は季節限定のホリデーマーケティングキャンペーン「#E...
業界トップランナーが語る「イベントDX」 リアルもオンラインも、もっと変われる
コロナ禍を経て、イベントの在り方は大きく変わった。データを駆使してイベントの体験価...