生成AI分野に欠かせないのが「LLM」であり、これはOpenAIのチャットbotサービス「ChatGPT」にも用いられている。本稿はLLMの技術を詳しく解説する。
大規模言語モデル(LLM)は、人工知能(AI)モデルの一種だ。ディープラーニング(深層学習)技術と大規模なデータセットを用いて、新しいコンテンツの生成や要約をしたり、次に起こることを予測したりする。
生成AI(ジェネレーティブAI)技術は、LLMと密接な関係がある。LLMはテキストベースのコンテンツを生成するために特別に設計されたジェネレーティブAIの一種だからだ。
言語は、あらゆるコミュニケーションの中核となる概念だ。人間が事実や自分の考えを他人に伝えるために、言葉や文法は不可欠だ。AIシステムでも、言語モデルが同様の役割を果たす。言語モデルはAIシステムが新しい言葉を生み出すための仕組みとなる。
言語モデルのルーツは、1966年にさかのぼる。1966年にマサチューセッツ工科大学(MIT)で完成した「ELIZA」は、言語モデルの最初期の例だ。
現代の言語モデルを利用可能にするにはまず、学習データ群を言語モデルに取り込む。次に、取り込んだ学習データから言葉同士の関連性やパターンを推測できるようにする。その後、学習されたデータに基づいて新しい文章や画像といったコンテンツを生成できるようにする。
言語モデルは一般的に、ユーザーが自然言語で命令を入力して結果を生成するAIアプリケーションで使用される。LLMは、AIにおける言語モデルが進化した概念だ。トレーニングと推論に使用するためにより多くの学習データを使用することで、AIモデルの能力が大幅に向上する。
AI技術が成長し続けるにつれ、ビジネスでAI技術を活用することはますます重要になる。機械学習モデルを作成し、ビジネスに適用するプロセスでは、単純さと一貫性を維持することがポイントになる。解決しなければならない課題を明確にすることも、機械学習モデルの正確さを確保することと同様に不可欠だ。
LLMの学習は、複数のステップを踏む。LLMはまず、コーパス(AIモデルが分析可能な形式に構造化された自然言語のデータ)を参照しながら、PB(ペタバイト)規模の学習データで学習する。この際、通常は教師なし学習(例題とその答えを組み合わせた「教師データ」を利用しない学習手法)を用いる。教師なし学習には、構造化されていないデータ とラベル付けされていないデータを利用する。ラベル付けされていないデータでトレーニングすることの利点の一つは、利用可能なデータを用意する負荷を軽減できることだ。この段階で、モデルは異なる単語や概念同士を関係付けられるようになる。
次の学習ステップは、自己教師あり学習(前のステップでトレーニングしたLLMを新しい学習データで再学習させる手法)によるLLMの微調整だ。ここではデータのラベリングをして、モデルがより正確に異なる概念同士を識別できるようにする。その後の工程では、深層学習によってLLMが単語や概念間の関係や結び付きを理解し、認識できるようにする。
訓練したLLMにプロンプト(指示)を入力することで、プロンプトに対して回答したり、新しくテキストを生成したりできるようになる。
LLMは、自然言語処理タスクに幅広く適用できるため、ますます人気が高まっている。以下で利用例を説明する。
Copyright © ITmedia, Inc. All Rights Reserved.
AIの進化が加速する「プラットフォームビジネス」とは?
マーケットプレイス構築を支援するMiraklが日本で初のイベントを開催し、新たな成長戦略...
「マーケティングオートメーション」 国内売れ筋TOP10(2024年12月)
今週は、マーケティングオートメーション(MA)ツールの売れ筋TOP10を紹介します。
2024年の消費者購買行動変化 「日本酒」に注目してみると……
2023年と比較して2024年の消費者の購買行動にはどのような変化があったのか。カタリナマ...