2019年10月23日 05時00分 公開
特集/連載

アクセラレーターの使い方もポイントいまさら聞けない「CPU」と「GPU」の違い AIに最適なのはどっち?

機械学習をはじめとしたAI(人工知能)技術を取り入れる動きが広がっている。AI技術を活用しようとするならば、まずは最適なハードウェアを見つける必要がある。

[Kassidy Kelley,TechTarget]

関連キーワード

Intel(インテル) | 機械学習


画像

 機械学習のようなAI(人工知能)技術を取り入れるなら、企業はまずハードウェアを評価する必要がある。評価する際のポイントが、プロセッサにCPUとGPU(画像処理プロセッサ)のどちらを選択するのかという点だ。プロセッサの選択は、企業のAI戦略に長期的に影響するので重要な意味を持つ。そしてその選択肢は多岐にわたる。

CPUを選択するケース

 CPUは基本的なコンピューティングの大半を担う。GPUやGoogleが自社開発したチップ「Tensor Processing Unit」(TPU)のようなAI分野で勢力を増すプロセッサが登場する前は、負荷の高い処理を含め、ほとんどの処理をCPUが担っていた。

 AI分野に最適なハードウェア選びで特に重要な要素となるのは、処理速度だ。機械学習モデルのトレーニングに関する処理の場合、CPUはGPUよりも長い時間がかかる可能性がある。CPUはGPUよりもコア数が少なく、GPUと同等の並列処理を担うことが難しいからだ。

 パフォーマンスを高めるために、CPUベンダーや開発者はプロセッサコアを複数にするマルチコアCPUや、処理高速化を支援するハードウェアであるアクセラレーターの階層化といった工夫を施している。特定のアプリケーションを優先して処理さに優先的にリソースを割り当てることで、コンピューティングの処理速度やCPUがメモリからデータを読み込む速度を高めることが可能になる。それでも一般的には、CPUがGPUの処理能力を上回ることはできない。

 「CPU1基の処理能力だけでは、高度な機械学習のタスクをこなすことは難しい。一方でCPUをベースにすることが優れた戦略になる可能性がある」。こう指摘するのはIntelでAI関連のビジネスを率いるガディ・シンガー氏だ。「簡単な機械学習を実行したいのであれば、あるいは機械学習と汎用(はんよう)的なコンピューティング処理をどちらも実行したいのであれば、CPUベースが最適だ」(シンガー氏)。さまざまな目的でプロセッサを機能させるのであれば、ソフトウェアによって特定のタスク用の処理能力を増強できるCPUの方が適しているという。

 ただしアクセラレーターをマルチコアCPUで使用するコンピューティングの仕組みが、AI技術向けの処理に最適とは限らない。企業が多層のニューラルネットワークを用いた高度な深層学習の実行を考えていたり、プロセッサを汎用的なコンピューティング処理ではなく、AI技術に特化した用途で利用したいと考えていたりするのであれば、GPUの方が適しているだろう。

GPUを選択するケース

ITmedia マーケティング新着記事

news139.jpg

急成長のチャットbot市場、2018年度の売上金額は前年度比倍増――ITR調べ
日本国内のベンダー29社への調査を基にしたチャットbot市場の実績と予測です。

news023.jpg

日本におけるカスタマーサクセスは「夜明け前」 これから乗り越えるべき3つの壁とは?
日本におけるカスタマーサクセス推進の鍵は「期待値コントロール」と「日本人の特性を踏...

news124.jpg

消費者が秋らしさを感じるもの 「さんま」以外に何がある?――クロス・マーケティング調べ
クロス・マーケティングは、全国の20〜69歳の男女1000人を対象に「秋の味覚に関する調査...