システム開発の“あの問題”が「生成AI」で悪化するかどうかを分ける条件システム開発と生成AI【中編】

システム開発における生成AIの活用が広がる一方で、課題が浮上している。どう対処すればいいのか。ローコード開発ツールベンダーOutSystemsの創業者兼CEOが解説する。

2023年09月21日 05時15分 公開
[Paulo RosadoTechTarget]

 テキストや画像などを自動生成するAI(人工知能)技術「ジェネレーティブAI」(生成AI)の、システム開発における活用が期待される。ただし企業が生成AIをシステム開発で利用するのであれば、注意すべき点がある。ローコード(最小限のソースコード記述)開発ツールベンダーOutSystemsの創業者兼CEOのパウロ・ロサド氏が、課題を解説する。


システム開発で「生成AI」を使うときの2つの課題

 1つ目の課題は、生成AIが出力する内容の、信頼性に関する懸念だ。開発者は生成AIを用いてソースコードを作成する際に、安全性や性能面を重視する。現段階で、生成AIの出力する内容は文脈や指示の仕方によって変化し、予測不可能だ。比較的小規模なソースコード作成の場合は開発者が確認できるが、一定規模以上の開発要件を満たし、生成AIの提案を適切に評価するには、専門家による監修が必要になる。

 2つ目の課題は、「技術的負債」の懸念だ。技術的負債とは、開発速度を優先することで生じるプログラムの不備を指す。先送りになる修正作業とも言える。生成AIが膨大な量のソースコードを生成し始めると、生成AIが作成したソースコードの不備を全て把握し、管理することは難しくなる。ソースコードの技術的負債の問題は避けられず、最終的には人間による手直しが必要になる。誰かが全てのソースコードを理解できる状態でなければならない。開発チームは生成AIが出力するソースコードの可視性とガバナンスを維持する必要がある。

 最高情報責任者(CIO)にとって、AIモデルから望ましい出力を得るための適切なプロンプト(情報を生成するための質問や指示)の開発は魅力的だ。一方で、実際に目で見て制御することが可能な、より信頼できる生成AIの活用法に投資する方が効果的かつ現実的だと言える。


 後編は、生成AIとローコード開発ツールを組み合わせるメリットを解説する。

Computer Weekly発 世界に学ぶIT導入・活用術

米国TechTargetが運営する英国Computer Weeklyの豊富な記事の中から、海外企業のIT製品導入事例や業種別のIT活用トレンドを厳選してお届けします。

Copyright © ITmedia, Inc. All Rights Reserved.

ITmedia マーケティング新着記事

news037.jpg

Boseが新型イヤホンをアクセサリーに CMOが語る「オシャレ推しに転じた理由」は?
2024年2月にオープンイヤー型のイヤホン「Bose Ultra Open Earbuds」を発売したBose。従...

news005.jpg

「コミュニティー」の正解はオフライン? オンライン? トレジャーデータがコロナ禍で学んだこと
Treasure Data CDPユーザーが主体となって活動するコミュニティー「Treasure Data Rockst...

news170.jpg

ニトリやサツドラも導入 自社ECで「Amazonのようなビジネス」を実現するサービスの魅力
オンラインマーケットプレイス構築を支援するMiraklが日本で初のイベントを開催し、新た...