機械学習はデータサイエンスのスキルを必要とする複雑なテクノロジーだ。Amazon、グーグルなどのクラウドプロバイダーはAIをもっと使いやすいものにすることを目指しているが、まだ改善の余地もある。
パブリッククラウドプロバイダーは、AIと機械学習のためのサービスを市場に投入し続けている。こうしたクラウドプロバイダーによると、極めて経験の少ない開発者でもそのテクノロジーを利用できるようにするためだという。こうしたサービスは機械学習アプリを作成するための学習時間を短縮する一方で、まだ成長の余地もある。
Amazon Web Services(AWS)の「Amazon SageMaker」とGoogleの「Cloud AutoML」の2つも、ベンダーが多数のAI専門家やデータサイエンティストを用意しなくても使用できると主張する機械学習サービスだ。
Cloud AutoMLはグラフィカルインタフェースを備え、オブジェクト認識モデルや画像検出モデルをユーザーが簡単にトレーニングできる。このサービスは、機械学習システムを立ち上げて稼働させるのに必要とされていた、従来の多くの要件を取り除く。具体的にはデータの手動セットアップ、モデルトレーニングプロセス、アプリケーションへの導入などが不要になる。Googleの「Cloud AutoML Natural Language」を介して、フロントエンドで自然言語処理を使用する機能も提供される。
Amazon SageMakerは、AWSクラウドプラットフォームへの導入に加えて、学習モデルとその関連データの開発速度を上げるもう1つのMachine Learning as a Service(MLaaS)ツールだ。
Copyright © ITmedia, Inc. All Rights Reserved.
生成AIを活用して業務や顧客体験の再構築を進める動きが活性化しているが、その多くが、PoCやラボ環境の段階にとどまっている。なぜなら、生成AIの可能性を最大限に引き出すための、インフラのパフォーマンスが不十分だからだ。
昨今のソフトウェア開発では、AIコーディングアシスタントの活用が主流になっている。しかし、最適なコーディングアシストツールは、開発者や企業によって異なるという。導入の際は、どのようなポイントに注意すればよいのか。
生成AIの活用にはデータベースが重要となるが、従来のデータベースは最新テクノロジーに対応できないなどの課題がある。本資料では、データベースをモダナイズし、生成AIを用いてビジネスイノベーションを生み出すための方法を探る。
ビジネスにおいて、検索体験およびその結果の質の向上が重要なテーマとなっている。顧客はもちろん、自社の従業員に対しても、実用的な答えをより迅速に、手間なく入手できる環境の整備が求められている。
登場以来ビジネスへの活用方法が模索されてきた生成AI。近年では業務組み込みにおける具体的な成功例が数多く報告されている。本資料では、5件の生成AI活用事例を交えて、業務に組み込む上での具体的なアプローチを解説する。
いまさら聞けない「仮想デスクトップ」と「VDI」の違いとは
遠隔のクライアント端末から、サーバにあるデスクトップ環境を利用できる仕組みである仮想デスクトップ(仮想PC画面)は便利だが、仕組みが複雑だ。仮想デスクトップの仕組みを基礎から確認しよう。
「サイト内検索」&「ライブチャット」売れ筋TOP5(2025年4月)
今週は、サイト内検索ツールとライブチャットの国内売れ筋TOP5をそれぞれ紹介します。
「ECプラットフォーム」売れ筋TOP10(2025年4月)
今週は、ECプラットフォーム製品(ECサイト構築ツール)の国内売れ筋TOP10を紹介します。
「パーソナライゼーション」&「A/Bテスト」ツール売れ筋TOP5(2025年4月)
今週は、パーソナライゼーション製品と「A/Bテスト」ツールの国内売れ筋各TOP5を紹介し...