クラウドETL「AWS Glue」「Azure Data Factory」でデータパイプラインを構築する方法「AWS Glue」と「Azure Data Factory」を徹底比較【中編】

AWSの「AWS Glue」やMicrosoftの「Azure Data Factory」といったクラウドETLは、データパイプラインの構築を支援する。両者の基本的な利用方法を説明する。

2022年11月14日 05時00分 公開
[Chris TozziTechTarget]

 Amazon Web ServicesとMicrosoftは、ETL(データの抽出、変換、読み込み)のクラウドサービス(以下、クラウドETL)として、それぞれ「AWS Glue」と「Azure Data Factory」を提供している。ユーザー企業はこれらのクラウドETLを利用することで、容易にデータパイプライン(さまざまなデータソースからデータを取り込むシステム)を構築可能だ。AWS GlueやAzure Data Factoryを使い、データパイプラインを構築する方法を説明する。

AWS GlueとAzure Data Factoryでデータパイプラインを構築する

 クラウドETLであるAWS GlueとAzure Data Factoryは、共通する前提条件がある。データパイプラインを構築する際に必要な要素は以下になる。

  • データソース
    • データを生成する場所を指す。具体的にはデータベース管理システム(DBMS)やAWSの「Amazon Simple Storage Service」(Amazon S3)、Microsoftの「Azure Blob Storage」などのオブジェクトストレージサービスといったシステムが当てはまる。AWS Glueの場合はAWSサービスが、Azure Data Factoryの場合はMicrosoftのクラウドサービス群「Microsoft Azure」のサービスが最も簡単に連携できる。両者共に、外部のデータソースも連携可能だ。
  • データターゲット
    • データターゲットは、データパイプラインで処理された後のデータを配置する場所を指す。オブジェクトストレージサービスまたはDBMSが当てはまる。

 AWS GlueとAzure Data FactoryのどちらのクラウドETLでデータパイプラインを構築するとしても、クラウドETLがデータソースからデータを収集する方法を定義する必要がある。収集したデータの処理が必要な場合は、その処理方法も定義する。

 データパイプラインは、外部システムからデータを取得してデータソースに足りない情報を補うことができる。データ処理の過程で、データソースから収集した重複データを削除することも可能だ。処理完了後にデータを転送するデータターゲットも指定する必要がある。

 AWS GlueとAzure Data Factoryは、各クラウドサービスの管理画面またはコマンドラインインタフェース(CLI)ツールで管理できる。

TechTarget発 先取りITトレンド

米国TechTargetの豊富な記事の中から、最新技術解説や注目分野の製品比較、海外企業のIT製品導入事例などを厳選してお届けします。

ITmedia マーケティング新着記事

news002.jpg

ロシアのbotファームがXを標的に虚偽情報を拡散 どうしてこうなった?
ロシアによる生成AIとソーシャルメディアを使った世論操作が活発化している。標的とされ...

news075.png

Z世代の告白手段は「直接」が大多数 理由は?
好きな人に思いを伝える手段として最も多く選ばれるのは「直接」。理由として多くの人は...

news100.jpg

日本はなぜ「世界の旅行者が再訪したい国・地域」のトップになったのか 5つの視点で理由を解き明かす
電通は独自調査で、日本が「観光目的で再訪したい国・地域」のトップとなった要因を「期...