AI時代に需要が高まりつつある自然言語処理(NLP)エンジニアになるには何が必要なのか。具体的な職務内容や、キャリアを歩む上で求められるスキルを解説する。
テキストや画像を自動で生成する人工知能(AI)技術「生成AI」や、そのベースとなる大規模言語モデル(LLM)の使用が拡大するにつれて、「自然言語処理」(NLP)のエンジニア(以下、NLPエンジニア)の需要が高まっている。NLPエンジニアになるには何が必要なのか。NLPエンジニアの具体的な職務内容や、求められるスキルを紹介する。
NLPエンジニアとは、組織におけるNLPプロジェクトで開発や保守、トレーニングなどを担う技術専門職だ。分かりやすく言い換えると、NLPエンジニアは、人間とコンピュータの「理解の架け橋」となる。例えば、AIシステムが自然言語から有用なインサイト(洞察)を引き出せるようなユーザーインタフェース(UI)を作成するといった具合だ。
NLPエンジニアの具体的な業務は、企業やプロジェクトごとに異なるが、一般的には以下のような内容で構成される。
NLPエンジニアは、以下のような他分野の技術者や専門家と密接に協力して業務を遂行する。
NLPエンジニアとしてのキャリアを築くには、以下の領域におけるスキルセットが必要になる。
次回は、NLPエンジニアを目指すために必要なスキルをどのように身に付けていけばいいのかを解説する。
米国TechTargetの豊富な記事の中から、最新技術解説や注目分野の製品比較、海外企業のIT製品導入事例などを厳選してお届けします。
Copyright © ITmedia, Inc. All Rights Reserved.
プロジェクト管理ツールの乱立を解消するため、一本化を検討するケースが増えている。重要な点は“情シス目線”で選定することだ。そこで8つの主要ツールを比較し、多様な業務に対応しつつ、全社最適も実現できるツールの条件を探った。
組織のスリム化を目指し、バックヤード業務を1つの部署に集約したものの、チームごとに業務管理の方法が異なるという、新たな課題を抱えることになったネクスウェイ。これを解決すべく、同社が採用したアプローチとは?
リアルタイム性や生成AI対応などデータベースに対する期待が急速に高まっている。そこで従来のPostgreSQLでは対応が難しかったスピードやスケーラビリティの課題を解消したデータ基盤が注目されている。本資料で詳細を解説する。
生成AIを業務に生かすには、回答の正確性やセキュリティなど、多くの課題を解決する必要がある。そこで注目したいのが、オペレーショナルデータベースと、検索拡張生成(RAG)技術を組み合わせるアプローチだ。
多くの企業でアジャイル開発の手法が取り入れられるようになった一方、欧米企業を中心にアジャイル開発の大規模化が普及している。これに伴い、「テストの工数やコストの増大」「製品全体像の把握の難しさ」といった課題が出てきた。
繝弱�繧ウ繝シ繝峨�縲∬イ�縺ョ驕コ逕」縺ァ縺ゅk繧「繝翫Ο繧ー讌ュ蜍吶r縺ェ縺上○繧九�縺� (2024/11/12)
驥題檮讖滄未縺ョ繝「繝繝翫う繧シ繝シ繧キ繝ァ繝ウ縲譛驕ゥ隗」縺ォ蟆弱¥縺ォ縺ッ (2024/3/29)
いまさら聞けない「仮想デスクトップ」と「VDI」の違いとは
遠隔のクライアント端末から、サーバにあるデスクトップ環境を利用できる仕組みである仮想デスクトップ(仮想PC画面)は便利だが、仕組みが複雑だ。仮想デスクトップの仕組みを基礎から確認しよう。
「ECプラットフォーム」売れ筋TOP10(2025年4月)
今週は、ECプラットフォーム製品(ECサイト構築ツール)の国内売れ筋TOP10を紹介します。
「パーソナライゼーション」&「A/Bテスト」ツール売れ筋TOP5(2025年4月)
今週は、パーソナライゼーション製品と「A/Bテスト」ツールの国内売れ筋各TOP5を紹介し...
Cookieを超える「マルチリターゲティング」 広告効果に及ぼす影響は?
Cookieレスの課題解決の鍵となる「マルチリターゲティング」を題材に、AI技術によるROI向...