敵対的生成ネットワーク(GAN)を使って本物を装い、偽造された動画や画像、音声を指す「ディープフェイク」にまつわるリスクにどう向き合えばいいのか。
敵対的生成ネットワーク(GAN:Generative Adversarial Network)には善意で好意的な用途がある。だが話題になることが多いのは、GANを使って本物を装い、偽造された動画や画像、音声を指す「ディープフェイク」にまつわるリスクの方だ。
2019年、ある企業がディープフェイクによって24万3000ドル(約2600万円)を盗み出される窃盗事件があった。この事件は、犯人が業務時間終了後にオフィスに電話をかけ、音声ディープフェイクを使ってこの企業のCEOの声を模し、延滞料金の発生を防ぐために金銭を振り込むよう担当責任者に依頼したものだった。
こうしたディープフェイクはますます広がっており、複数のソーシャルメディア企業は対処に取り組んでいる。GoogleやTwitter、Facebook、Redditは、それぞれが提供するサービスにおいてディープフェイクがもたらすリスクと言論の自由のバランスを取るために、ここ数カ月、ポリシーにさまざまな変更を加えている。とはいえ、具体的にディープフェイクに対する保護となる技術的な解決策はまだない。
Copyright © ITmedia, Inc. All Rights Reserved.
お知らせ
米国TechTarget Inc.とInforma Techデジタル事業が業務提携したことが発表されました。TechTargetジャパンは従来どおり、アイティメディア(株)が運営を継続します。これからも日本企業のIT選定に役立つ情報を提供してまいります。
Metaに潰されないために残された生き残りの道は?――2025年のSNS大予測(Snapchat編)
若年層に人気のSnapchatだが、大人にはあまり浸透していない。一方で、AR(拡張現実)開...
「猛暑」「米騒動」「インバウンド」の影響は? 2024年に最も売り上げが伸びたものランキング
小売店の推定販売金額の伸びから、日用消費財の中で何が売れたのかを振り返るランキング...
Netflixコラボが止まらない 「イカゲーム」シーズン2公開で人気爆上がり必至のアプリとは?
Duolingoは言語学習アプリとNetflixの大人気ドラマを結び付けたキャンペーンを展開。屋外...