2020年04月02日 05時00分 公開
特集/連載

“偽CEO”の声にだまされ2000万円以上の被害も 「ディープフェイク」の対処法GANのリスクを超えて【後編】

敵対的生成ネットワーク(GAN)を使って本物を装い、偽造された動画や画像、音声を指す「ディープフェイク」にまつわるリスクにどう向き合えばいいのか。

[Rowena Lindsay,TechTarget]

関連キーワード

機械学習


 敵対的生成ネットワーク(GAN:Generative Adversarial Network)には善意で好意的な用途がある。だが話題になることが多いのは、GANを使って本物を装い、偽造された動画や画像、音声を指す「ディープフェイク」にまつわるリスクの方だ。

 2019年、ある企業がディープフェイクによって24万3000ドル(約2600万円)を盗み出される窃盗事件があった。この事件は、犯人が業務時間終了後にオフィスに電話をかけ、音声ディープフェイクを使ってこの企業のCEOの声を模し、延滞料金の発生を防ぐために金銭を振り込むよう担当責任者に依頼したものだった。

 こうしたディープフェイクはますます広がっており、複数のソーシャルメディア企業は対処に取り組んでいる。GoogleやTwitter、Facebook、Redditは、それぞれが提供するサービスにおいてディープフェイクがもたらすリスクと言論の自由のバランスを取るために、ここ数カ月、ポリシーにさまざまな変更を加えている。とはいえ、具体的にディープフェイクに対する保護となる技術的な解決策はまだない。

ではどう対処すべきか

ITmedia マーケティング新着記事

news052.jpg

Disney飛躍の立役者ボブ・アイガー氏が語る 「積み上げてきた価値を『崇拝』せず『尊重』せよ」
The Walt Disney Companyを巨大メディア企業に成長させた前CEOのボブ・アイガー氏が、レ...

news048.jpg

組織内のデータの半分以上が「ダークデータ」 回答者の66%――Splunk調査
「ダークデータ」とは活用できていない 、もしくは把握すらできていないデータのこと。

news153.jpg

「広告をきっかけにアプリをダウンロード」 回答者の46%――Criteo調査
コロナ禍におけるアプリユーザー動向調査レポート。日本のモバイルアプリユーザーはコン...