2019年08月26日 08時00分 公開
特集/連載

AIとストレージ【後編】AI用ストレージに必要なのは単なる「速さ」ではない

AI用のストレージ要件はフェーズやユースケースによって変化する。要求される速度にも種類があり、場合によっては速度が重要ではないこともある。学習時と推論時でも要件は大きく異なる。

[Stephen Pritchard,Computer Weekly]

 前編(Computer Weekly日本語版 8月7日号掲載)では、AIを構築するに当たって求められるストレージの要件を検討した。AIシステムでは何を保存する必要があり、どのようなアクセスが発生するのか。

 後編では、AIシステムのフェーズごとに異なるストレージのI/O特性、NVMeやクラウド利用の可能性について解説する。

Computer Weekly日本語版 8月21日号無料ダウンロード

本記事は、プレミアムコンテンツ「Computer Weekly日本語版 8月21日号」(PDF)掲載記事の抄訳版です。本記事の全文は、同プレミアムコンテンツで読むことができます。

なお、同コンテンツのEPUB版およびKindle(MOBI)版も提供しています。

ボタンボタン

最適なメディア、NVMe

 PA Consulting Groupのマコーレー氏は次のように語っている。「SSDを適切に利用することが、とてつもなく大きなメリットをもたらす。つまり、どのファイルシステムを使うか、そのファイルシステムをどのように最適化するか、そして(市販の)ストレージハードウェアを最大限に活用するためにアクセラレーターが必要かどうかになる。アクセラレーターはデータ管理とファイルシステムに多くの力を注ぐ」

 現在はフラッシュストレージが一般的になっている。さらに、GPUの近くに格納するデータへの高速アクセスが必要なアプリケーションに最適なメディアとして、NVMeフラッシュも浮上している。HDDも依然存在するが、低層の大容量ストレージに追いやられることが増えている。

 AIシステムにはIOPSパフォーマンスの高いストレージが必要だと誤解されることが多いが、実際に重要なのはランダムI/Oの処理能力だ。

AIの各フェーズとI/Oのニーズ

 AIのストレージとI/Oの要件は、ライフサイクルの中で変化する。

 一般的なAIシステムはトレーニングが必要で、そのフェーズではI/O処理が特に多くなる。ここで役立つのはフラッシュやNVMeだ。だが「推論」フェーズでは演算リソースの利用が多くなるだろう。

 ディープラーニングシステムには動作しながら自身を再トレーニングする機能があるため、データへの継続的なアクセスが必要になる。ここで多くの企業が勘違いする。

続きはComputer Weekly日本語版 8月21日号にて

本記事は抄訳版です。全文は、以下でダウンロード(無料)できます。


Computer Weekly日本語版 最近のバックナンバー

Computer Weekly日本語版 8月7日号 光無線技術Li-Fiが「アリ」な理由

Computer Weekly日本語版 7月17日号 ツールを使え!

Computer Weekly日本語版 7月3日号 本当に役に立つ人材の見つけ方


ITmedia マーケティング新着記事

news006.gif

Amazon Alexa対応新型「Fire TV Cube」を差し上げます
メールマガジン「ITmedia マーケティング通信」を新規にご購読いただいた方の中から抽選...