AI用ストレージに必要なのは単なる「速さ」ではないAIとストレージ【後編】

AI用のストレージ要件はフェーズやユースケースによって変化する。要求される速度にも種類があり、場合によっては速度が重要ではないこともある。学習時と推論時でも要件は大きく異なる。

2019年08月26日 08時00分 公開
[Stephen PritchardComputer Weekly]

 前編(Computer Weekly日本語版 8月7日号掲載)では、AIを構築するに当たって求められるストレージの要件を検討した。後編では、AIシステムのフェーズごとに異なるストレージのI/O特性、NVMeやクラウド利用の可能性について解説する。

最適なメディア、NVMe

 PA Consulting Groupのマコーレー氏は次のように語っている。「SSDを適切に利用することが、とてつもなく大きなメリットをもたらす。つまり、どのファイルシステムを使うか、そのファイルシステムをどのように最適化するか、そして(市販の)ストレージハードウェアを最大限に活用するためにアクセラレーターが必要かどうかになる。アクセラレーターはデータ管理とファイルシステムに多くの力を注ぐ」

 現在はフラッシュストレージが一般的になっている。さらに、GPUの近くに格納するデータへの高速アクセスが必要なアプリケーションに最適なメディアとして、NVMeフラッシュも浮上している。HDDも依然存在するが、低層の大容量ストレージに追いやられることが増えている。

 AIシステムにはIOPSパフォーマンスの高いストレージが必要だと誤解されることが多いが、実際に重要なのはランダムI/Oの処理能力だ。

AIの各フェーズとI/Oのニーズ

 AIのストレージとI/Oの要件は、ライフサイクルの中で変化する。

 一般的なAIシステムはトレーニングが必要で、そのフェーズではI/O処理が特に多くなる。ここで役立つのはフラッシュやNVMeだ。だが「推論」フェーズでは演算リソースの利用が多くなるだろう。

 ディープラーニングシステムには動作しながら自身を再トレーニングする機能があるため、データへの継続的なアクセスが必要になる。ここで多くの企業が勘違いする。

 IBMのストレージ部門でディレクターを務めるダグ・オフラハーティー氏は次のように述べる。「企業が機械学習のストレージについて語ることがあるが、GPUをビジー状態に保つために非常に広い帯域幅を必要とするモデルのトレーニングだけを話題にしていることが多い。だがデータサイエンスチームの生産性を真に高めるためには、取り込みから推論までのAIデータパイプライン全体を管理する必要がある」

 AIの出力は非常に小さいため、最新の企業向けITシステムの多くでは問題にならない。つまり、AIシステムにはストレージの階層が必要だ。その点では従来のビジネス分析、ERP、データベースシステムに似ている。

 Logicalis UKでAIリードとチーフデータサイエンティストを務めるジャスティン・プライス氏によると、オンプレミスシステムが商業価値を提供するためには少なくともSSDレベルのパフォーマンスが必要になるという。だが、AIシステムにも大容量ストレージが必要で、これにはHDD、クラウド、さらにはテープも使われる。

 「ノードはそれぞれ異なる可能性があり、ユーザーはハイブリッド環境を使うことになる。重要なのは、柔軟性を持つことと、さまざまな応用事例の要件を満たすことだ。情報が“ホット”な場合はNVMeにキャッシュする必要があるが、コピーしてフラッシュに保存することもできる」と語るのは、ソフトウェア定義ストレージメーカーDateraで最高マーケティング責任者を務めるクリス・カミング氏だ。

 クラウドストレージも、大量のデータを抱える企業にとって魅力的な選択肢だ。分析企業DataVisorのCEOインリャン・シエ氏は、クラウドも使えるがそのためにはデータがある場所にAIエンジンを移行しなければならないという。現在クラウドベースのAIを使用できるのは、最新世代のGPUを利用しない応用事例に限られる。

 「ストレージは具体的なユースケースとアルゴリズム次第で異なる。ディープラーニングなどの一部のアプリケーションは演算リソースを集中的に使う。そのため当社の顧客はGPUを集中的に利用するアーキテクチャを使う。ストレージを多用するアプリケーションは、データがある場所で演算することを推奨する」(シエ氏)

 クラウドに適している可能性があるのは、GPUをあまり使用しないアプリケーションだろう。例えばGoogleは、同社のインフラと連動するAI用チップを開発している。だがIBMのオフラハーティー氏は、技術面と金銭面の制約を考えると、現時点でのクラウドはAIの中核というよりも補助的な役割を果たしていると指摘する。

Copyright © ITmedia, Inc. All Rights Reserved.

鬯ッ�ョ�ス�ォ�ス�ス�ス�エ�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ー鬯ッ�ッ�ス�ィ�ス�ス�ス�セ�ス�ス�ス�ス�ス�ス�ス�ケ�ス�ス�ス�ス驍オ�コ�ス�、�ス縺、ツ€鬯ッ�ゥ陝キ�「�ス�ス�ス�「鬮ォ�エ陷ソ髢€�セ證ヲ�ソ�ス�ス�ス�ス�ス�ス�ク鬮ッ�キ�ス�エ�ス�ス�ス�・�ス�ス�ス�ス�ス�ス�ス�。鬯ッ�ゥ陝キ�「�ス�ス�ス�「�ス�ス�ス�ス�ス�ス�ス�ァ�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�、鬯ッ�ゥ陝キ�「�ス�ス�ス�「鬮ォ�エ闕ウ�サ�ス�ス髫カ謐コ�サ繧托スス�ソ�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス鬯ッ�ゥ陝キ�「�ス�ス�ス�「鬮ォ�エ髮懶ス」�ス�ス�ス�「�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�シ鬯ッ�ゥ陝キ�「�ス�ス�ス�「鬮ォ�エ闕オ證ヲ�ソ�ス�ス�ス�ス�ス�ス�ス�ス�サ�ス�ス�ス�ス�ス�ス�ス�」�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス

事例 株式会社AIT

スケーラブルで高速・確実なデータアクセスを実現、某研究所のHPSS導入事例

データ生成デバイスの進化・多様化により、保存すべきデータ容量は急増した。その管理においては、コストとパフォーマンスのバランスが課題となっている。解決策の1つとして注目される「HPSS」の効果について、導入事例を紹介したい。

事例 株式会社AIT

データ量の急増でインフラ強化が急務に、JA大阪電算の事例に学ぶシステム移行術

業務のデジタル化が進み、データ量やワークロードが増大していた大阪府農協電算センター。それによりインフラの負荷が高まり、性能を向上させることが喫緊の課題になっていた。本資料では同社がどのようにインフラを移行したのか解説する。

製品資料 日本ヒューレット・パッカード合同会社

ハイブリッド環境の構造化データ管理、レガシーストレージからどう脱却する?

AIでは構造化データの活用が進む一方、クラウド普及に伴いデータの分散化が加速している。この状況下で課題となるのが、レガシーストレージの存在だ。本資料では、構造化データに適したストレージ戦略を紹介する。

製品資料 株式会社ネットワールド

どのタイプのストレージがニーズに合致するのか、NetApp製品ガイドで探る最適解

データ環境の急変は、企業のストレージ課題を複雑化させている。性能や拡張性、データ保護、分散環境の一元管理、コスト最適化など、自社の課題に合わせた製品・サービスをどう見つければよいのか。それに役立つ製品ガイドを紹介したい。

製品資料 日本ヒューレット・パッカード合同会社

AI活用で非構造化データも適切に処理、ハイブリッド環境に最適なストレージとは

構造化データ/非構造化データの両方を適切に処理する必要がある今、エンタープライズデータストレージには、より高度な要件が求められている。こうした中で注目される、単一障害点のないAI主導の分散型ストレージプラットフォームとは?

鬩幢ス「隴主�蜃ス�ス雜」�ス�ヲ鬩幢ス「隰ィ魑エツ€鬩幢ス「隴趣ス「�ス�ス�ス�シ鬩幢ス「�ス�ァ�ス�ス�ス�ウ鬩幢ス「隴趣ス「�ス�ス�ス�ウ鬩幢ス「隴趣ス「�ス�ソ�ス�ス�ス雜」�ス�ヲ鬩幢ス「隴趣ス「�ス�ソ�ス�スPR

From Informa TechTarget

いまさら聞けない「仮想デスクトップ」と「VDI」の違いとは

いまさら聞けない「仮想デスクトップ」と「VDI」の違いとは
遠隔のクライアント端末から、サーバにあるデスクトップ環境を利用できる仕組みである仮想デスクトップ(仮想PC画面)は便利だが、仕組みが複雑だ。仮想デスクトップの仕組みを基礎から確認しよう。

AI用ストレージに必要なのは単なる「速さ」ではない:AIとストレージ【後編】 - TechTargetジャパン サーバ&ストレージ 鬮ォ�エ�ス�ス�ス�ス�ス�ー鬯ィ�セ�ス�ケ�ス縺、ツ€鬯ョ�ォ�ス�ェ髯区サゑスソ�ス�ス�ス�ス�コ�ス�ス�ス�ス

TechTarget鬩幢ス「�ス�ァ�ス�ス�ス�ク鬩幢ス「隴趣ス「�ス�ス�ス�」鬩幢ス「隴乗��ス�サ�ス�」�ス雜」�ス�ヲ 鬮ォ�エ�ス�ス�ス�ス�ス�ー鬯ィ�セ�ス�ケ�ス縺、ツ€鬯ョ�ォ�ス�ェ髯区サゑスソ�ス�ス�ス�ス�コ�ス�ス�ス�ス

鬯ッ�ゥ陝キ�「�ス�ス�ス�「鬮ォ�エ陷ソ髢€�セ證ヲ�ソ�ス�ス�ス�ス�ス�ス�ク鬮ッ�キ�ス�エ�ス�ス�ス�・�ス�ス�ス�ス�ス�ス�ス�。鬯ッ�ゥ陝キ�「�ス�ス�ス�「�ス�ス�ス�ス�ス�ス�ス�ァ�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�、鬯ッ�ゥ陝キ�「�ス�ス�ス�「鬮ォ�エ闕ウ�サ�ス�ス髫カ謐コ�サ繧托スス�ソ�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス鬯ッ�ゥ陝キ�「�ス�ス�ス�「鬮ォ�エ髮懶ス」�ス�ス�ス�「�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�シ鬯ッ�ゥ陝キ�「�ス�ス�ス�「鬮ォ�エ闕オ證ヲ�ソ�ス�ス�ス�ス�ス�ス�ス�ス�サ�ス�ス�ス�ス�ス�ス�ス�」�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス鬯ッ�ゥ陝キ�「�ス�ス�ス�「鬮ォ�エ髮懶ス」�ス�ス�ス�「�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ゥ鬯ッ�ゥ陝キ�「�ス�ス�ス�「鬮ォ�エ髮懶ス」�ス�ス�ス�「�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ウ鬯ッ�ゥ陝キ�「�ス�ス�ス�「�ス�ス�ス�ス�ス�ス�ス�ァ�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ュ鬯ッ�ゥ陝キ�「�ス�ス�ス�「鬮ォ�エ髮懶ス」�ス�ス�ス�「�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ウ鬯ッ�ゥ陝キ�「�ス�ス�ス�「�ス�ス�ス�ス�ス�ス�ス�ァ�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ス�ー

2025/05/28 UPDATE

ITmedia マーケティング新着記事

news017.png

「サイト内検索」&「ライブチャット」売れ筋TOP5(2025年5月)
今週は、サイト内検索ツールとライブチャットの国内売れ筋TOP5をそれぞれ紹介します。

news027.png

「ECプラットフォーム」売れ筋TOP10(2025年5月)
今週は、ECプラットフォーム製品(ECサイト構築ツール)の国内売れ筋TOP10を紹介します。

news023.png

「パーソナライゼーション」&「A/Bテスト」ツール売れ筋TOP5(2025年5月)
今週は、パーソナライゼーション製品と「A/Bテスト」ツールの国内売れ筋各TOP5を紹介し...