仮想GPUは一見すると機械学習に適している。だが処理能力をフルに必要とする用途でなければ、仮想GPUへの投資には慎重になる必要がある。
仮想化技術が進化したことで、GPU(グラフィックスプロセッシングユニット)の並列処理機能を活用する機会が広がった。ハードウェア仮想化の一つである仮想GPUは、アプリケーションの稼働効率をどのようにして高められるのだろうか。ハードウェアへの投資を最大化するためには、この点を知っておくことが大事だ。
従来、GPUはコンピュータ支援設計(CAD)や仮想デスクトップなど、グラフィックス処理を必要とするアプリケーションを稼働させるために使用されてきた。現在はグラフィックス処理だけではなく、パフォーマンス要件が厳しい一般的なアプリケーションにもGPUを利用する「GPGPU」(GPUによる汎用<はんよう>計算)が普及している。
GPGPUを採用すると、大規模なデータセットを分析する機能を強化できる。AI(人工知能)技術を利用したアプリケーションやスーパーコンピュータに適する。注意しなければならないのは、パフォーマンスの需要が大きく変動する場合や予測が不可能な場合は、高価なGPUがアイドル(待機)状態になる時間が多くなり、そのメリットを十分に活用できない可能性があることだ。
Copyright © ITmedia, Inc. All Rights Reserved.
いまさら聞けない「仮想デスクトップ」と「VDI」の違いとは
遠隔のクライアント端末から、サーバにあるデスクトップ環境を利用できる仕組みである仮想デスクトップ(仮想PC画面)は便利だが、仕組みが複雑だ。仮想デスクトップの仕組みを基礎から確認しよう。
「サイト内検索」&「ライブチャット」売れ筋TOP5(2025年5月)
今週は、サイト内検索ツールとライブチャットの国内売れ筋TOP5をそれぞれ紹介します。
「ECプラットフォーム」売れ筋TOP10(2025年5月)
今週は、ECプラットフォーム製品(ECサイト構築ツール)の国内売れ筋TOP10を紹介します。
「パーソナライゼーション」&「A/Bテスト」ツール売れ筋TOP5(2025年5月)
今週は、パーソナライゼーション製品と「A/Bテスト」ツールの国内売れ筋各TOP5を紹介し...