歴史から探る「仮想GPU」が生まれた理由と、機械学習では“使えない”理由次の注目分野は「FPGA」

仮想GPUは一見すると機械学習に適している。だが処理能力をフルに必要とする用途でなければ、仮想GPUへの投資には慎重になる必要がある。

2019年10月04日 05時00分 公開
[Trevor PottTechTarget]

関連キーワード

データ分析 | 機械学習


画像

 仮想化技術が進化したことで、GPU(グラフィックスプロセッシングユニット)の並列処理機能を活用する機会が広がった。ハードウェア仮想化の一つである仮想GPUは、アプリケーションの稼働効率をどのようにして高められるのだろうか。ハードウェアへの投資を最大化するためには、この点を知っておくことが大事だ。

 従来、GPUはコンピュータ支援設計(CAD)や仮想デスクトップなど、グラフィックス処理を必要とするアプリケーションを稼働させるために使用されてきた。現在はグラフィックス処理だけではなく、パフォーマンス要件が厳しい一般的なアプリケーションにもGPUを利用する「GPGPU」(GPUによる汎用<はんよう>計算)が普及している。

 GPGPUを採用すると、大規模なデータセットを分析する機能を強化できる。AI(人工知能)技術を利用したアプリケーションやスーパーコンピュータに適する。注意しなければならないのは、パフォーマンスの需要が大きく変動する場合や予測が不可能な場合は、高価なGPUがアイドル(待機)状態になる時間が多くなり、そのメリットを十分に活用できない可能性があることだ。

GPUへのニーズの変化が後押しした「仮想GPU」の誕生

Copyright © ITmedia, Inc. All Rights Reserved.

From Informa TechTarget

お知らせ
米国TechTarget Inc.とInforma Techデジタル事業が業務提携したことが発表されました。TechTargetジャパンは従来どおり、アイティメディア(株)が運営を継続します。これからも日本企業のIT選定に役立つ情報を提供してまいります。

ITmedia マーケティング新着記事

news079.jpg

CMOが生き残るための鍵は「生産性」――2025年のマーケティング予測10選【中編】
不確実性が高まる中でもマーケターは生産性を高め、成果を出す必要がある。「Marketing D...

news023.jpg

世界のモバイルアプリ市場はこう変わる 2025年における5つの予測
生成AIをはじめとする技術革新やプライバシー保護の潮流はモバイルアプリ市場に大きな変...

news078.png

営業との連携、マーケティング職の64.6%が「課題あり」と回答 何が不満なのか?
ワンマーケティングがB2B企業の営業およびマーケティング職のビジネスパーソン500人を対...